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Abstract

The term C*-algebra was introduced by I. E. Segal in 1947 to describe norm-closed subalgebras of the
algebra L(H) of bounded linear operators on a Hilbert space H. A natural generalization is to replace
the Hilbert space (which is an L2- space) with an Lp-space, where p ∈ [1,∞]. This gives rise to the
study of Lp operator algebras. For p 6= 2, we don’t have an inner product and therefore the geometry
of an Lp space is much more complicated than the one of a Hilbert space. This makes the study of Lp

operator algebras more complicated than the one of C∗-algebras. Nevertheless, there are some C∗ results
and constructions that still hold for Lp operator algebras.

In this talk I will define what an Lp operator algebra is and give several examples. I plan to spend
most of the time doing this and the only prerequisite will be basic measure theory: anyone who knows
what an Lp space is should be able to follow most of the talk. I will then talk about an Lp analog of the
Cuntz algebras that comes from looking at the Leavitt algebras. Time permitting, I will talk about the
full and reduced Crossed products of an Lp operator algebra A when we have an isometric action of a
second countable locally compact group G on A.

1 Definition and Examples

Definition 1.1. Let A be a Banach algebra, and let p ∈ [1,∞]. We say that A is an Lp operator algebra
if there is a measure space (X,B, µ) such that A is isometrically isomorphic to a norm closed subalgebra of
L
(
Lp(X,µ)

)
.

We now give several examples of Lp operator algebras.

Example 1.2. For any (X,B, µ) and p ∈ [1,∞], we trivially have that L
(
Lp(X,µ)

)
is an Lp operator

algebra.

Example 1.3. For any (X,B, µ) and p ∈ [1,∞], the algebra K
(
Lp(X,µ)

)
of compact operators on Lp(X,µ)

is an Lp operator algebra.

Example 1.4. Any C∗-algebra is an L2 operator algebra. However, a general L2 operator algebra is a not
necessarily a self-adjoint algebra.

Example 1.5. Let p ∈ [1,∞], n ∈ Z<0 and endow Cn with the usual p-norm:

‖z‖p =

{
(
∑n

j=1 |zj |p)1/p if p ∈ [1,∞)

maxj=1,...,n |zj | if p =∞

Then, if we equip Mn, the set of n × n complex matrices, with the operator norm we get an Lp operator
algebra that is isometrically isomorphic to L(`p({1, . . . , n})). To emphasize the dependence on the p-norm,
this space is denoted by Mp

n.
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Example 1.6. For j, k ∈ {1, . . . , n}, let ej,k ∈ Mp
n be the matrix whose only non-zero entry is the entry

(j, k) which is equal to 1. Then, the set of upper triangular matrices

T pn = span{ej,k : 1 ≤ j ≤ k ≤ n}

is a subalgebra of Mp
n, which is also an Lp operator algebra.

Example 1.7. Let p ∈ [1,∞) and let X be a compact topological space. Suppose that µ is a regular
Borel measure on X such that µ(U) > 0 for every open set U ⊆ X (we can always find such measure when
X is compact metrizable and in some other cases). Then, C(X) is an Lp operator algebra. Indeed, Let
ϕ : C(X)→ L

(
Lp(X,µ)

)
be given by

(ϕ(f)ξ)(x) := f(x)ξ(x)

We have to check that ϕ(f)ξ ∈ Lp(X,µ) for any ξ ∈ Lp(X,µ) and that ϕ is an injective isometric homo-
morphism. The former follows directly from∫

X
|f(x)ξ(x)|pdµ(x) ≤ ‖f‖p∞‖ξ‖pp

For the latter, it’s clear that ϕ is a homomorphism and since ξ ≡ 1 ∈ Lp(X,µ) (because µ(X) < ∞), we
also have that ϕ is injective. We now only need to prove that ϕ is isometric. Well, we already saw that
‖ϕ(f)ξ‖pp ≤ ‖f‖p∞‖ξ‖pp, so ‖ϕ(f)‖ ≤ ‖f‖∞. For the reverse inequality, assume that ‖f‖∞ > 0 (otherwise the
desired inequality is trivial). For any c ≥ 0 with c < ‖f‖∞ we have that

U := {x ∈ X : |f(x)| > c}

is an open set and therefore µ(U) > 0. Furthermore, notice that

‖ϕ(f)χU‖pp =

∫
U
|f |pdµ > cpµ(U) = cp‖χU‖pp

Hence,

‖ϕ(f)‖ ≥ ‖ϕ(f)χU‖p
‖χU‖p

> c,

and since this holds for any c with c < ‖f‖∞, it follows that ‖ϕ(f)‖ ≥ ‖f‖∞ as desired.

Example 1.8. Let p ∈ [1,∞] and let X be a locally compact topological space. Then C0(X), with the
usual supremum norm, is an Lp operator algebra. To see this, let ν be counting measure on X and define
ϕ : C0(X)→ L

(
Lp(X, ν)

)
by

(ϕ(f)ξ)(x) := f(x)ξ(x)

One checks that ϕ is an isometric bijection from C0(X) to a norm closed subalgebra of L(Lp(X, ν)).

The maps ϕ used in the previous two examples are special cases of representations.

Definition 1.9. A representation of a Banach algebra A on a Banach space E is a continuous
homomorphism ϕ : A→ L(E). We say that a representation ϕ is non-degenerate if

ϕ(A)E := span{ϕ(a)ξ : a ∈ A, ξ ∈ E}

is dense in E.

When studying Lp operator algebras we are interested in representations on Lp spaces. In fact, an Lp

operator algebra is a Banach algebra for which there is an isometric representation on Lp(X,µ) for some
measure space (X,B, µ).
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Example 1.10. Let A be the subalgebra of T p2 generated by e1,2. This is an Lp operator algebra. We claim
that A does not admit non-degenerate representations. Indeed, assume that ϕ : A→ L(E) is a representation
on any non-zero Banach space E. Since ϕ(e1,2) = 0 it follows that if ξ ∈ E, then ϕ(e1,2)ξ ∈ ker(ϕ(e1,2)).
This gives of course that ϕ(A)E ⊂ ker(ϕ(e1,2)). We have now two cases:

(1) ϕ(e1,2) 6= 0. Here, ker(ϕ(e1,2)) is a proper subset of E (as there is a ξ ∈ E for which ϕ(e1,2)ξ 6= 0)
which is also closed. Hence, ϕ(A)E cannot be dense in E.

(2) ϕ(e1,2) = 0. Here, ϕ(A)E = {0}, so again it cannot be dense in E.

Example 1.11. As a final example we show how one can get new Lp operator algebras from old ones. For
p ∈ [1,∞), if (X,B, µ) and (Y, C, ν) are measure spaces, there is an Lp tensor product Lp(X,µ)⊗p Lp(Y, ν),
which can be canonically identified with Lp(X × Y, µ× ν) via (ξ ⊗ η)(x, y) = ξ(x)η(y). Moreover:

• Let (Xj ,Bj , µj) and (Yj , Cj , νj) be measure spaces for j = 1, 2. If a ∈ L(Lp(X1, µ1), L
p(X2, µ2)) and

b ∈ L(Lp(Y1, ν1), L
p(Y2, ν2)), then there is a⊗ b ∈ L(Lp(X1×Y1, µ1× ν1), Lp(X2×Y2, µ2× ν2)), which

has the expected properties: bilinearity, ‖a⊗ b‖ = ‖a‖‖b‖ and (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.

Then, if Aj ⊂ Lp(Xj , µj) is a norm closed subalgebra for j = 1, 2. We define

A1 ⊗p A2 ⊂ L
(
Lp(X1 ×X2, µ1 × µ2)

)
as the closed linear span of a1 ⊗ a2 for a1 ∈ A1 and a2 ∈ A2. Then A1 ⊗p A2 is an Lp operator algebra.

2 Analogs of Cuntz Algebras

Let n ≥ 2 be an integer and H an infinite dimensional separable Hilbert space. Then, there are elements
s1, s2, . . . , sn ∈ L(H) such that

s∗jsj = 1 and
n∑
j=1

sjs
∗
j = 1 (?)

We define On, the Cuntz algebra of order n, as C∗(s1, . . . , sn). In fact, the construction of On is independent
of the Hilbert space H and the choice of isometries as long as the relations (?) are satisfied. The algebra
On is a simple C∗-algebra and has the following universal property: If A is a unital C∗-algebra containing
elements a1, . . . , an such that

a∗jaj = 1 and
n∑
j=1

aja
∗
j = 1,

then there is a unique ∗-homomorphism ϕ : On → A such that ϕ(sj) = aj .

We will now introduce the Lp-Cuntz algebras Opn which are an Lp analog of On. In fact, when p = 2, we
have O2

n = On. For that matter we first need to introduce an algebraic object: the Leavitt complex algebras.

Definition 2.1. Let n ≥ 2 be an integer. We define the Leavitt algebra Ln to be the universal complex
algebra generated by elements s1, s2, . . . , sn, t1, t2, . . . , tn satisfying

tksj = δj,k and
n∑
j=1

sjtj = 1

There is a well defined norm on Ln that comes from a particular kind of algebraic representations of Ln
on σ-finite Lp spaces. The completion of Ln with respect to this norm is the Lp-Cuntz algebra Opn. The
algebraic representations that we need are the so called spatial representations. We need a little background
to define these representations.
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Notation 2.2. For a measure space (X,B, µ) we have the set N (µ) := {E ∈ B : µ(E) = 0}. We put

[E] := {F ∈ B : E4F ∈ N (µ)}

and define B/N (µ) := {[E] : E ∈ B}. It’s an easy exercise to check that the classic set operations, ∪,∩, \,
are well defined in B/N (µ). In fact, B/N (µ) is a Boolean algebra.

Definition 2.3. Let (X,B, µ) and (Y, C, ν) be measure spaces. A measurable set transformation is a
map S : B/N (µ)→ C/N (ν) such that whenever E1, E2, . . . ∈ B

(i) S(N (µ)) = N (ν) (i.e. S([∅]) = [∅])

(ii) S([X] \ [E1]) = [Y ] \ S([E1])

(iii) S(
⋃∞
j=1[Ej ]) =

⋃∞
j=1 S([Ej ])

Moreover, we define the range of S as

ran(S) := {F ∈ C : [F ] = S([E]) for some E ∈ B}

Remark 2.4. One checks that ran(S) is a sub σ-algebra of C and that S is surjective if and only if
ran(S) = C.

Notation 2.5. Whenever we encounter a measurable set transformation S : B/N (µ)→ C/N (ν) there will
be some abuse of notation

• We will write S(E) = F whenever S([E]) = [F ].

• We write S : (X,B, µ)→ (Y, C, ν) instead of S : B/N (µ)→ C/N (ν).

Notation 2.6. For a measure space (X,B, µ) we denote by L0(X,µ) to the space of complex valued mea-
surable functions modulo functions that vanish a.e [µ]. Then, if [E] ∈ B/N (µ), the function χ[E] ∈ L0(X,µ)
is actually the equivalence class of χE in L0(X,µ).

Proposition 2.7. (The pushforward on L0(X,µ) induced by S) Let S : (X,B, µ)→ (Y, C, ν) be a measurable
set transformation. Then there is a unique linear map S∗ : L∗(X,µ)→ L0(Y, ν) characterized by

S∗(χ[E]) = χS([E])

Definition 2.8. For a measure space (X,B, µ) we define ACM(B, µ) to be the set of measures on B that
are absolutely continuous with respect to µ. That is, ACM(B, µ) := { measures λ on B : λ� µ}.

Proposition 2.9. (The pullback from ACM(C, ν) induced by S) Let S : (X,B, µ)→ (Y, C, ν) be a measurable
set transformation. Then there is a unique map S∗ : ACM(C, ν)→ ACM(B, µ) characterized by

S∗(λ)(E) = λ(F )

whenever S([E]) = [F ].

We really need to push measures forward rather than pull them back. For this, we require S : (X,B, µ) →
(Y, C, ν) to be an injective measurable transformation. Then, we get a measurable trnasformation S−1 :
(Y, ran(S), ν|ran(S))→ (X,B, µ). This allows us to define the pushforward on ACM(B, µ) induced by S
as follows: S∗ : ACM(B, µ)→ ACM(ran(S), ν|ran(S)) is given by S∗ := (S−1)∗.
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Lemma 2.10. Let p ∈ [1,∞] and S : (X,B, µ) → (Y, C, ν) be an injective measurable set transformation
such that ν|ran(S) is σ-finite, and let g be a measurable function on Y such that |g| = 1 a.e. [ν]. If s :
Lp(X,µ)→ Lp(Y, ν) is given by

s(ξ) :=

(
dS∗(µ)

dν|ran(S)

)1/p

S∗(ξ)g

Then, s is an isometry: ‖s(ξ)‖p = ‖ξ‖p.

Definition 2.11. Let (X,B, µ) and (Y, C, ν) be σ-finite measure spaces.

(1) A spatial system for (X,B, µ) and (Y, C, ν) is a quadruple (E,F, S, g) in which E ∈ B, F ∈ C,
S : (E,B|E , µ|E) → (F, C|F , ν|F ) is a bijective measurable set transformation and g : F → C a
ran(S)-measurable function such that |g| = 1 a.e. [ν|F ].

(2) If p ∈ [1,∞], a linear map s : Lp(X,µ) → Lp(Y, ν) is said to be a spatial partial isometry if there
is a spatial system (E,F, S, g) such that

s(ξ) :=


(
dS∗(µ|E)
dν|ran(S)

)1/p
S∗(ξ|E)g on F

0 on Y \ F

An important theorem by Lamperti states that for p ∈ [1,∞) \ {2}, any isometry s ∈ L
(
Lp(X,µ), Lp(Y, ν)

)
is a spatial isometry. Lamperti’s theorem has been really useful to prove many facts about Lp operator
algebras.

Lemma 2.12. Let (X,B, µ) and (Y, C, ν) be σ-finite measure spaces. Let p ∈ [1,∞], and let (E,F, S, g) be
a spatial system for (X,B, µ) and (Y, C, ν).

(1) There is a unique spatial partial isometry s ∈ L
(
Lp(X,µ), Lp(Y, ν)

)
whose spatial system is (E,F, S, g).

(2) Furthermore, there is a unique spatial partial isometry t ∈ L
(
Lp(Y, ν), Lp(X,µ)

)
whose spatial system

is (F,E, S−1, (S−1)∗(g)−1). The element t is called the reverse of s.

Definition 2.13. Let n ≥ 2 be an integer, let p ∈ [1,∞] and let (X,B, µ) be a σ-finite measure space. A
unital algebra homomorphism ρ : Ln → L

(
Lp(X,µ)

)
is said to be a spatial representation if for each j,

the operators ρ(sj) and ρ(tj) are spatial partial isometries, with ρ(tj) being the reverse of ρ(sj).

Definition 2.14. Let n ≥ 2 be an integer, let p ∈ [1,∞], and let ρ : Ln → L
(
Lp(X,µ)

)
be a spatial

representation of Ln on a σ-finite space (X,B, µ). We define a spatial Lp operator norm on Ln by setting

‖a‖ = ‖ρ(a)‖.

This norm is seen to be independent of the spatial representation ρ chosen. We define the Lp Cuntz algebra
Opn to be the completion of Ln in the above norm.

Theorem 2.15. Let n ≥ 2 be an integer and let p ∈ [1,∞). Then

(1) Opn is simple.

(2) O2
n = On.

(3) Opn has the same K-theory as when p = 2: K0(Opn) = Z/(n− 1)Z and K1(Opn) = {0}.

(4) Op2 ⊗p O
p
2
∼= Op2 if and only if p = 2.
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