L^p Operator Algebras.

Alonso Delfín University of Oregon.

November 7, 2019

Abstract

The term C^* -algebra was introduced by I. E. Segal in 1947 to describe norm-closed subalgebras of the algebra $\mathcal{L}(\mathcal{H})$ of bounded linear operators on a Hilbert space \mathcal{H} . A natural generalization is to replace the Hilbert space (which is an L^2 - space) with an L^p -space, where $p \in [1, \infty]$. This gives rise to the study of L^p operator algebras. For $p \neq 2$, we don't have an inner product and therefore the geometry of an L^p space is much more complicated than the one of a Hilbert space. This makes the study of L^p operator algebras more complicated than the one of C^* -algebras. Nevertheless, there are some C^* results and constructions that still hold for L^p operator algebras.

In this talk I will define what an L^p operator algebra is and give several examples. I plan to spend most of the time doing this and the only prerequisite will be basic measure theory: anyone who knows what an L^p space is should be able to follow most of the talk. I will then talk about an L^p analog of the Cuntz algebras that comes from looking at the Leavitt algebras. Time permitting, I will talk about the full and reduced Crossed products of an L^p operator algebra A when we have an isometric action of a second countable locally compact group G on A.

1 Definition and Examples

Definition 1.1. Let A be a Banach algebra, and let $p \in [1, \infty]$. We say that A is an L^p operator algebra if there is a measure space (X, \mathcal{B}, μ) such that A is isometrically isomorphic to a norm closed subalgebra of $\mathcal{L}(L^p(X, \mu))$.

We now give several examples of L^p operator algebras.

Example 1.2. For any (X, \mathcal{B}, μ) and $p \in [1, \infty]$, we trivially have that $\mathcal{L}(L^p(X, \mu))$ is an L^p operator algebra.

Example 1.3. For any (X, \mathcal{B}, μ) and $p \in [1, \infty]$, the algebra $\mathcal{K}(L^p(X, \mu))$ of compact operators on $L^p(X, \mu)$ is an L^p operator algebra.

Example 1.4. Any C^* -algebra is an L^2 operator algebra. However, a general L^2 operator algebra is a not necessarily a self-adjoint algebra.

Example 1.5. Let $p \in [1, \infty]$, $n \in \mathbb{Z}_{<0}$ and endow \mathbb{C}^n with the usual *p*-norm:

$$||z||_p = \begin{cases} (\sum_{j=1}^n |z_j|^p)^{1/p} & \text{if } p \in [1,\infty) \\ \max_{j=1,\dots,n} |z_j| & \text{if } p = \infty \end{cases}$$

Then, if we equip M_n , the set of $n \times n$ complex matrices, with the operator norm we get an L^p operator algebra that is isometrically isomorphic to $\mathcal{L}(\ell^p(\{1,\ldots,n\}))$. To emphasize the dependence on the *p*-norm, this space is denoted by M_n^p .

Example 1.6. For $j, k \in \{1, ..., n\}$, let $e_{j,k} \in M_n^p$ be the matrix whose only non-zero entry is the entry (j, k) which is equal to 1. Then, the set of upper triangular matrices

$$T_n^p = \operatorname{span}\{e_{j,k} : 1 \le j \le k \le n\}$$

is a subalgebra of M_n^p , which is also an L^p operator algebra.

Example 1.7. Let $p \in [1, \infty)$ and let X be a compact topological space. Suppose that μ is a regular Borel measure on X such that $\mu(U) > 0$ for every open set $U \subseteq X$ (we can always find such measure when X is compact metrizable and in some other cases). Then, C(X) is an L^p operator algebra. Indeed, Let $\varphi: C(X) \to \mathcal{L}(L^p(X, \mu))$ be given by

$$(\varphi(f)\xi)(x) := f(x)\xi(x)$$

We have to check that $\varphi(f)\xi \in L^p(X,\mu)$ for any $\xi \in L^p(X,\mu)$ and that φ is an injective isometric homomorphism. The former follows directly from

$$\int_{X} |f(x)\xi(x)|^{p} d\mu(x) \le \|f\|_{\infty}^{p} \|\xi\|_{p}^{p}$$

For the latter, it's clear that φ is a homomorphism and since $\xi \equiv 1 \in L^p(X, \mu)$ (because $\mu(X) < \infty$), we also have that φ is injective. We now only need to prove that φ is isometric. Well, we already saw that $\|\varphi(f)\xi\|_p^p \leq \|f\|_{\infty}^p \|\xi\|_p^p$, so $\|\varphi(f)\| \leq \|f\|_{\infty}$. For the reverse inequality, assume that $\|f\|_{\infty} > 0$ (otherwise the desired inequality is trivial). For any $c \geq 0$ with $c < \|f\|_{\infty}$ we have that

$$U := \{ x \in X : |f(x)| > c \}$$

is an open set and therefore $\mu(U) > 0$. Furthermore, notice that

$$|\varphi(f)\chi_U||_p^p = \int_U |f|^p d\mu > c^p \mu(U) = c^p ||\chi_U||_p^p$$

Hence,

$$\|\varphi(f)\| \ge \frac{\|\varphi(f)\chi_U\|_p}{\|\chi_U\|_p} > c,$$

and since this holds for any c with $c < ||f||_{\infty}$, it follows that $||\varphi(f)|| \ge ||f||_{\infty}$ as desired.

Example 1.8. Let $p \in [1, \infty]$ and let X be a locally compact topological space. Then $C_0(X)$, with the usual supremum norm, is an L^p operator algebra. To see this, let ν be counting measure on X and define $\varphi: C_0(X) \to \mathcal{L}(L^p(X, \nu))$ by

$$(\varphi(f)\xi)(x) := f(x)\xi(x)$$

One checks that φ is an isometric bijection from $C_0(X)$ to a norm closed subalgebra of $\mathcal{L}(L^p(X,\nu))$.

The maps φ used in the previous two examples are special cases of representations.

Definition 1.9. A representation of a Banach algebra A on a Banach space E is a continuous homomorphism $\varphi : A \to \mathcal{L}(E)$. We say that a representation φ is non-degenerate if

$$\varphi(A)E := \operatorname{span}\{\varphi(a)\xi : a \in A, \xi \in E\}$$

is dense in E.

When studying L^p operator algebras we are interested in representations on L^p spaces. In fact, an L^p operator algebra is a Banach algebra for which there is an isometric representation on $L^p(X,\mu)$ for some measure space (X, \mathcal{B}, μ) .

Example 1.10. Let A be the subalgebra of T_2^p generated by $e_{1,2}$. This is an L^p operator algebra. We claim that A does not admit non-degenerate representations. Indeed, assume that $\varphi : A \to \mathcal{L}(E)$ is a representation on **any** non-zero Banach space E. Since $\varphi(e_{1,2}) = 0$ it follows that if $\xi \in E$, then $\varphi(e_{1,2})\xi \in \ker(\varphi(e_{1,2}))$. This gives of course that $\varphi(A)E \subset \ker(\varphi(e_{1,2}))$. We have now two cases:

- (1) $\varphi(e_{1,2}) \neq 0$. Here, ker($\varphi(e_{1,2})$) is a proper subset of E (as there is a $\xi \in E$ for which $\varphi(e_{1,2})\xi \neq 0$) which is also closed. Hence, $\varphi(A)E$ cannot be dense in E.
- (2) $\varphi(e_{1,2}) = 0$. Here, $\varphi(A)E = \{0\}$, so again it cannot be dense in E.

Example 1.11. As a final example we show how one can get new L^p operator algebras from old ones. For $p \in [1, \infty)$, if (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are measure spaces, there is an L^p tensor product $L^p(X, \mu) \otimes_p L^p(Y, \nu)$, which can be canonically identified with $L^p(X \times Y, \mu \times \nu)$ via $(\xi \otimes \eta)(x, y) = \xi(x)\eta(y)$. Moreover:

• Let $(X_j, \mathcal{B}_j, \mu_j)$ and $(Y_j, \mathcal{C}_j, \nu_j)$ be measure spaces for j = 1, 2. If $a \in \mathcal{L}(L^p(X_1, \mu_1), L^p(X_2, \mu_2))$ and $b \in \mathcal{L}(L^p(Y_1, \nu_1), L^p(Y_2, \nu_2))$, then there is $a \otimes b \in \mathcal{L}(L^p(X_1 \times Y_1, \mu_1 \times \nu_1), L^p(X_2 \times Y_2, \mu_2 \times \nu_2))$, which has the expected properties: bilinearity, $||a \otimes b|| = ||a|| ||b||$ and $(a_1 \otimes b_1)(a_2 \otimes b_2) = a_1a_2 \otimes b_1b_2$.

Then, if $A_j \subset L^p(X_j, \mu_j)$ is a norm closed subalgebra for j = 1, 2. We define

$$A_1 \otimes_p A_2 \subset \mathcal{L}(L^p(X_1 \times X_2, \mu_1 \times \mu_2))$$

as the closed linear span of $a_1 \otimes a_2$ for $a_1 \in A_1$ and $a_2 \in A_2$. Then $A_1 \otimes_p A_2$ is an L^p operator algebra.

2 Analogs of Cuntz Algebras

Let $n \geq 2$ be an integer and \mathcal{H} an infinite dimensional separable Hilbert space. Then, there are elements $s_1, s_2, \ldots, s_n \in \mathcal{L}(\mathcal{H})$ such that

$$s_{j}^{*}s_{j} = 1$$
 and $\sum_{j=1}^{n} s_{j}s_{j}^{*} = 1$ (*)

We define \mathcal{O}_n , the Cuntz algebra of order n, as $C^*(s_1, \ldots, s_n)$. In fact, the construction of \mathcal{O}_n is independent of the Hilbert space \mathcal{H} and the choice of isometries as long as the relations (\star) are satisfied. The algebra \mathcal{O}_n is a simple C^* -algebra and has the following universal property: If A is a unital C^* -algebra containing elements a_1, \ldots, a_n such that

$$a_{j}^{*}a_{j} = 1$$
 and $\sum_{j=1}^{n} a_{j}a_{j}^{*} = 1$.

then there is a unique *-homomorphism $\varphi : \mathcal{O}_n \to A$ such that $\varphi(s_j) = a_j$.

We will now introduce the L^p -Cuntz algebras \mathcal{O}_n^p which are an L^p analog of \mathcal{O}_n . In fact, when p = 2, we have $\mathcal{O}_n^2 = \mathcal{O}_n$. For that matter we first need to introduce an algebraic object: the Leavitt complex algebras.

Definition 2.1. Let $n \ge 2$ be an integer. We define the **Leavitt algebra** L_n to be the universal complex algebra generated by elements $s_1, s_2, \ldots, s_n, t_1, t_2, \ldots, t_n$ satisfying

$$t_k s_j = \delta_{j,k}$$
 and $\sum_{j=1}^n s_j t_j = 1$

There is a well defined norm on L_n that comes from a particular kind of algebraic representations of L_n on σ -finite L^p spaces. The completion of L_n with respect to this norm is the L^p -Cuntz algebra \mathcal{O}_n^p . The algebraic representations that we need are the so called spatial representations. We need a little background to define these representations. Notation 2.2. For a measure space (X, \mathcal{B}, μ) we have the set $\mathcal{N}(\mu) := \{E \in \mathcal{B} : \mu(E) = 0\}$. We put

$$[E] := \{F \in \mathcal{B} : E \triangle F \in \mathcal{N}(\mu)\}$$

and define $\mathcal{B}/\mathcal{N}(\mu) := \{ [E] : E \in \mathcal{B} \}$. It's an easy exercise to check that the classic set operations, \cup, \cap, \setminus , are well defined in $\mathcal{B}/\mathcal{N}(\mu)$. In fact, $\mathcal{B}/\mathcal{N}(\mu)$ is a Boolean algebra.

Definition 2.3. Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be measure spaces. A measurable set transformation is a map $S : \mathcal{B}/\mathcal{N}(\mu) \to \mathcal{C}/\mathcal{N}(\nu)$ such that whenever $E_1, E_2, \ldots \in \mathcal{B}$

- (i) $S(\mathcal{N}(\mu)) = \mathcal{N}(\nu)$ (i.e. $S([\varnothing]) = [\varnothing])$
- (ii) $S([X] \setminus [E_1]) = [Y] \setminus S([E_1])$
- (iii) $S(\bigcup_{j=1}^{\infty} [E_j]) = \bigcup_{j=1}^{\infty} S([E_j])$

Moreover, we define the range of S as

$$\operatorname{ran}(S) := \{F \in \mathcal{C} : [F] = S([E]) \text{ for some } E \in \mathcal{B}\}$$

Remark 2.4. One checks that ran(S) is a sub σ -algebra of C and that S is surjective if and only if ran(S) = C.

Notation 2.5. Whenever we encounter a measurable set transformation $S : \mathcal{B}/\mathcal{N}(\mu) \to \mathcal{C}/\mathcal{N}(\nu)$ there will be some abuse of notation

- We will write S(E) = F whenever S([E]) = [F].
- We write $S: (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ instead of $S: \mathcal{B}/\mathcal{N}(\mu) \to \mathcal{C}/\mathcal{N}(\nu)$.

Notation 2.6. For a measure space (X, \mathcal{B}, μ) we denote by $L^0(X, \mu)$ to the space of complex valued measurable functions modulo functions that vanish a.e $[\mu]$. Then, if $[E] \in \mathcal{B}/\mathcal{N}(\mu)$, the function $\chi_{[E]} \in L^0(X, \mu)$ is actually the equivalence class of χ_E in $L^0(X, \mu)$.

Proposition 2.7. (The pushforward on $L^0(X, \mu)$ induced by S) Let $S : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ be a measurable set transformation. Then there is a unique linear map $S_* : L^*(X, \mu) \to L^0(Y, \nu)$ characterized by

$$S_*(\chi_{[E]}) = \chi_{S([E])}$$

Definition 2.8. For a measure space (X, \mathcal{B}, μ) we define $ACM(\mathcal{B}, \mu)$ to be the set of measures on \mathcal{B} that are absolutely continuous with respect to μ . That is, $ACM(\mathcal{B}, \mu) := \{ \text{ measures } \lambda \text{ on } \mathcal{B} : \lambda \ll \mu \}.$

Proposition 2.9. (The pullback from $ACM(\mathcal{C}, \nu)$ induced by S) Let $S : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ be a measurable set transformation. Then there is a unique map $S^* : ACM(\mathcal{C}, \nu) \to ACM(\mathcal{B}, \mu)$ characterized by

$$S^*(\lambda)(E) = \lambda(F)$$

whenever S([E]) = [F].

We really need to push measures forward rather than pull them back. For this, we require $S : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ to be an injective measurable transformation. Then, we get a measurable transformation $S^{-1} : (Y, \operatorname{ran}(S), \nu|_{\operatorname{ran}(S)}) \to (X, \mathcal{B}, \mu)$. This allows us to define the **pushforward on** ACM (\mathcal{B}, μ) induced by S as follows: $S_* : \operatorname{ACM}(\mathcal{B}, \mu) \to \operatorname{ACM}(\operatorname{ran}(S), \nu|_{\operatorname{ran}(S)})$ is given by $S_* := (S^{-1})^*$.

Lemma 2.10. Let $p \in [1, \infty]$ and $S : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ be an injective measurable set transformation such that $\nu|_{\operatorname{ran}(S)}$ is σ -finite, and let g be a measurable function on Y such that |g| = 1 a.e. $[\nu]$. If $s : L^p(X, \mu) \to L^p(Y, \nu)$ is given by

$$s(\xi) := \left(\frac{dS_*(\mu)}{d\nu|_{\operatorname{ran}(S)}}\right)^{1/p} S_*(\xi)g$$

Then, s is an isometry: $||s(\xi)||_p = ||\xi||_p$.

Definition 2.11. Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be σ -finite measure spaces.

- (1) A spatial system for (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) is a quadruple (E, F, S, g) in which $E \in \mathcal{B}, F \in \mathcal{C}, S : (E, \mathcal{B}|_E, \mu|_E) \to (F, \mathcal{C}|_F, \nu|_F)$ is a bijective measurable set transformation and $g : F \to \mathbb{C}$ a ran(S)-measurable function such that |g| = 1 a.e. $[\nu|_F]$.
- (2) If $p \in [1, \infty]$, a linear map $s : L^p(X, \mu) \to L^p(Y, \nu)$ is said to be a **spatial partial isometry** if there is a spatial system (E, F, S, g) such that

$$s(\xi) := \begin{cases} \left(\frac{dS_*(\mu|_E)}{d\nu|_{\operatorname{ran}(S)}}\right)^{1/p} S_*(\xi|_E)g & \text{on } F\\ 0 & \text{on } Y \setminus F \end{cases}$$

An important theorem by Lamperti states that for $p \in [1, \infty) \setminus \{2\}$, any isometry $s \in \mathcal{L}(L^p(X, \mu), L^p(Y, \nu))$ is a spatial isometry. Lamperti's theorem has been really useful to prove many facts about L^p operator algebras.

Lemma 2.12. Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be σ -finite measure spaces. Let $p \in [1, \infty]$, and let (E, F, S, g) be a spatial system for (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) .

- (1) There is a unique spatial partial isometry $s \in \mathcal{L}(L^p(X,\mu), L^p(Y,\nu))$ whose spatial system is (E, F, S, g).
- (2) Furthermore, there is a unique spatial partial isometry $t \in \mathcal{L}(L^p(Y,\nu), L^p(X,\mu))$ whose spatial system is $(F, E, S^{-1}, (S^{-1})_*(g)^{-1})$. The element t is called the **reverse of** s.

Definition 2.13. Let $n \ge 2$ be an integer, let $p \in [1, \infty]$ and let (X, \mathcal{B}, μ) be a σ -finite measure space. A unital algebra homomorphism $\rho : L_n \to \mathcal{L}(L^p(X, \mu))$ is said to be a **spatial representation** if for each j, the operators $\rho(s_j)$ and $\rho(t_j)$ are spatial partial isometries, with $\rho(t_j)$ being the reverse of $\rho(s_j)$.

Definition 2.14. Let $n \geq 2$ be an integer, let $p \in [1, \infty]$, and let $\rho : L_n \to \mathcal{L}(L^p(X, \mu))$ be a spatial representation of L_n on a σ -finite space (X, \mathcal{B}, μ) . We define a spatial L^p operator norm on L_n by setting

$$||a|| = ||\rho(a)||.$$

This norm is seen to be independent of the spatial representation ρ chosen. We define the L^p Cuntz algebra \mathcal{O}_n^p to be the completion of L_n in the above norm.

Theorem 2.15. Let $n \ge 2$ be an integer and let $p \in [1, \infty)$. Then

- (1) \mathcal{O}_n^p is simple.
- (2) $\mathcal{O}_n^2 = \mathcal{O}_n$.
- (3) \mathcal{O}_n^p has the same K-theory as when p = 2: $K_0(\mathcal{O}_n^p) = \mathbb{Z}/(n-1)\mathbb{Z}$ and $K_1(\mathcal{O}_n^p) = \{0\}$.
- (4) $\mathcal{O}_2^p \otimes_p \mathcal{O}_2^p \cong \mathcal{O}_2^p$ if and only if p = 2.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE OR 97403-1222, USA. *E-mail address*: alonsod@uoregon.edu